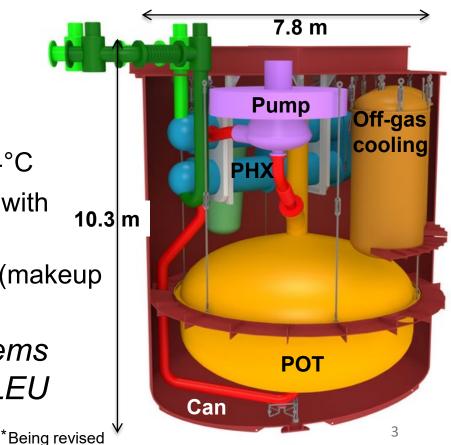
ThorCon: Status 2022

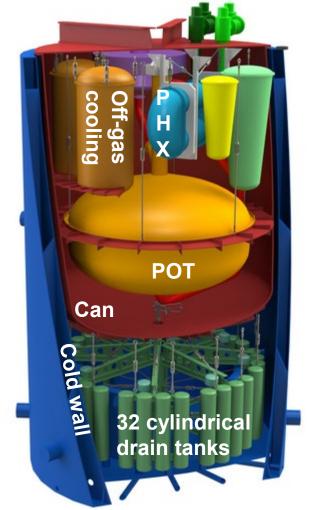


Several Organizations Facilitates The Development Of ThorCon Fission Reactor, Including

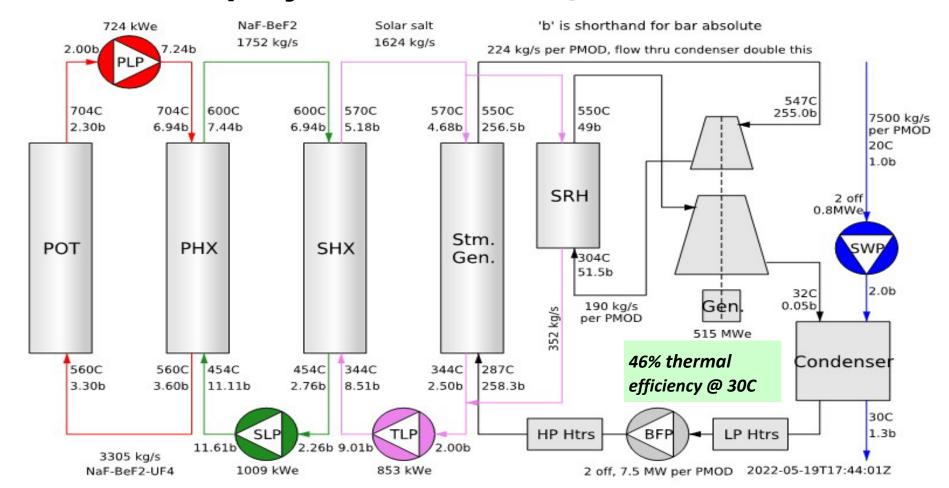
- Milano Multiphysics (MMP)
- Empresarios Agrupados (EA)
- PLN Engineering
- Virginia Tech
- University of California, Berkeley
- University of Wisconsin, Madison
 - Purification of barren salt

ThorCon Is a Thermal Spectrum, Molten Fluoride Salt Reactor Contained in a Can

- ❖ Pot (Vessel) (316 SS)
 - ♦ Pressure: 3.5 bar (0.33 Mpa)
 - ♦ NaF-BeF₂-UF₄ (72-16-12 mol %)*
 - ◆ Temperature: inlet/outlet 564/704°C
 - Graphite moderator (4 y lifetime) with channels for molten salt flow
 - ◆ Converts some U-238 to Pu-239 (makeup fuel is added continuously)
- Due to recent events, the systems have been redesigned to use LEU


Control of ThorCon Is Achieved via:

- ❖ Negative temperature coefficient (-6 to -2 pcm/K)
 - Increased temperature reduces reactivity
- Drop of any one of 3-control rods
- Drain of fuel-salt to drain tank
 - ♦ Loss of heat sink or loss of flow that results in a temperature rise of ~120K
- Redox control
 - Minimized corrosion (general & localized)
 - ♦ Avoid carbide precipitation
- Removal of Xe (transient response) via Off-gas system



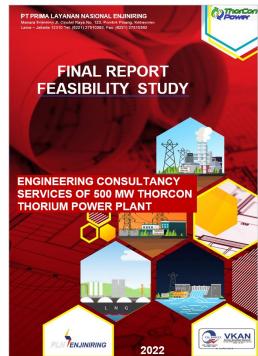
Cooling Is Achieved By Housing Can Unit Within A Cold Wall

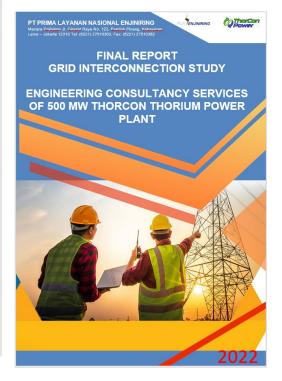
- Cold wall (25 mm 316 SS/500 mm water/25 mm 316 SS) continuously absorbs heat
 - Radiated from the Pot
 - Radiated from the drain tanks
- Cold wall is cooled by natural water circulation

ThorCon Employs Three Salt Loops To Generate Power

MMP Performs Extensive Neutronic And Heat Flow Analyses That Supports 2022 Design Modifications

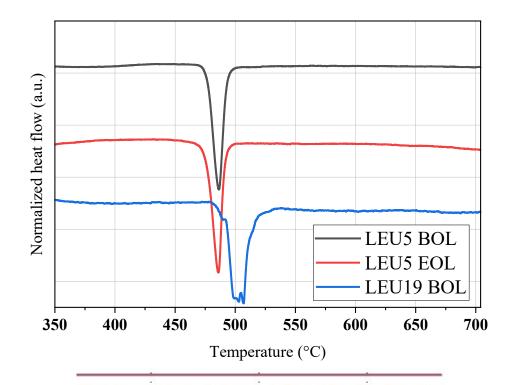
- Provide passive cooling for an unlimited grace period for all but two rare events where the grace period is at least two months
- Compensate for xenon-135 transient during power level changes

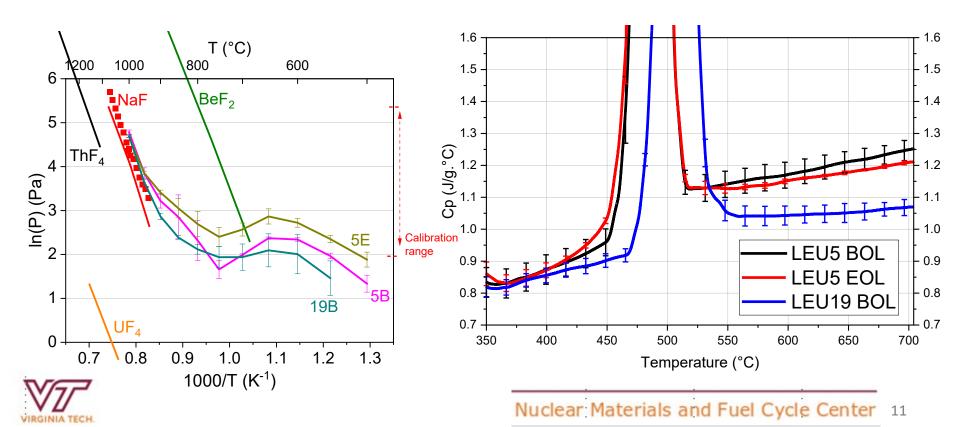

Empresarios Agrupados (EA) Entered A Partnership With Thorcon


- Brings 50 years of nuclear engineering, construction and operation experience
- Supports the engineering design of the full-scale Non-Fission Test Platform (NTP) and the 500 MWe demo plant
- Develops a procurement plan engaging suppliers such as ENSA, Doosan, ENUSA, DSME, etc.
- Manages the project schedule and budget

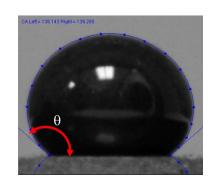
Demonstration Site And Grid Interconnection Studies Are Ongoing (PLN Engineering)

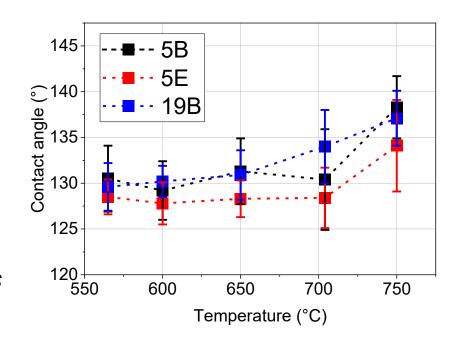
Northern part of Kelasa Island, Central Bangka Regency, Bangka Belitung Islands Province



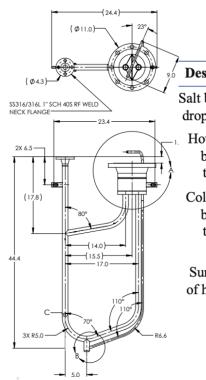

Virginia Tech Has Measured (DSC) the Melting Point **And Heat of Fusion Of Salts**

Salt	Melting point (°C)	Heat of fusion (J/g)
5B	477.4	146.9
5E	476.5	144.3
19B	493.0	177.7

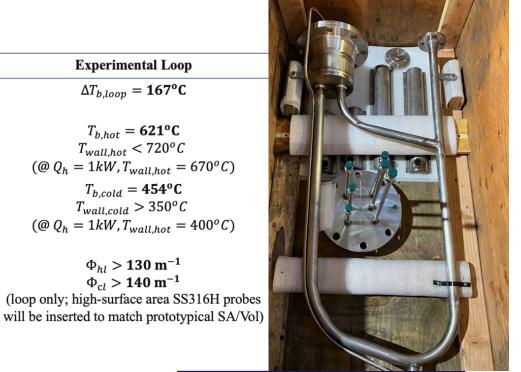



Virginia Tech Has Measured Vapor Pressure (Effusion via TGA) of Salts and Specific Heat Capacity (MDSC)

Contact Angle (Salt/Graphite) Varied With Temperature And Salt Composition



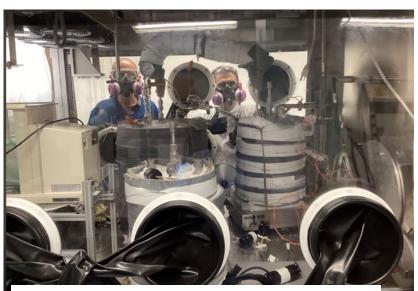
❖ For FLiBe on graphite at between 500 to 800°C, ORNL 3591 reports 147 ± 12°



UCB Designed And Constructed 316H Thermal Convection Loop (Matches Prototypical Surface/Volume Ratio)

Design Parameter	Prototypical
Salt bulk temperature drop across the loop	$\Delta T_{b,loop} = 170^{\circ} \text{C}$
Hot leg maximum bulk and wall temperatures	$T_{b,hot} = 620^{\circ}$ $T_{wall,hot}$ $= 670^{\circ} C$
Cold leg minimum bulk and wall temperatures	$T_{b,cold}$ = 450°C $T_{wall,cold}$ = 400° C
Surface Area/Vol. of hot leg and cold leg	$\Phi_{hl} = 450 \text{m}^{-1}$ $\Phi_{cl} = 560 \text{m}^{-1}$

Prototypical	Experimental Loop	
$\Delta T_{b,loop} = 170^{\circ} \text{C}$	$\Delta T_{b,loop} = 167^{\circ} C$	
$_{o,hot} = 620^{\circ}$ C	$T_{b,hot} = 621^{\mathrm{o}}\mathrm{C}$	
$T_{wall,hot}$	$T_{wall,hot} < 720^{o}C$	
$= 670^{o}C$	$(@ Q_h = 1kW, T_{wall,hot} = 670^oC)$	
$T_{b,cold}$	$T_{b,cold} = 454$ °C	
=450°C	$T_{wall,cold} > 350^{o}C$	
$T_{wall,cold}$ = $400^{\circ}C$	$(@ Q_h = 1kW, T_{wall,hot} = 400^{\circ}C)$	
Φ_{hl}	$\Phi_{hl} > 130 \ \mathrm{m}^{-1}$	
$=450m^{-1}$	$\Phi_{cl}^{''} > 140 \text{ m}^{-1}$	
$_{cl} = 560 \mathrm{m}^{-1}$	(loop only; high-surface area SS316H prob	



Supported Loop Has Been Installed In Glovebox. Down-Batching Of NaF-BeF₂ Has Been Achieved

In-glovebox salt transfer operation from 50 kg tank to 20 kg tank.

In Summary, Several Organizations Facilitates The **Development Of ThorCon Fission Reactor, Including:**

- Milano Multiphysics (MMP)
- Empresarios Agrupados (EA)
- PLN Engineering
- Virginia Tech
- University of California, Berkeley
- University of Wisconsin, Madison
 - Purification of barren salt