

Thermal Properties Measurements of Molten Salts At Argonne National Laboratory

MSR Developer Conference 2022

Melissa A. Rose
Chemical and Fuel Cycle Technologies Division
Argonne National Laboratory

Objective: Provide the data necessary to build a FOAK MSR by 2035

Targeting molten salt reactor developer needs to support design, licensing and operation of molten salt reactors

- Thermochemical and thermophysical properties of molten salts
 - Generating quality data to predict the behavior of molten salts during normal and transient operations (Melissa Rose)
- Real-time chemistry monitoring and accountancy of materials in MSRs
 - ➤ Developing accurate sensors resistant to radiation damage and corrosive molten salt environments (Nathan Hoyt)
- Accident scenario analyses supporting the licensing process
 - Generating data needed to simulate salt spills, spreading behavior, and release of FPs as aerosols and vapor (Sara Thomas)

Generating Thermal Property Data

Predicting molten salt behavior during normal and transient conditions requires knowledge of property values over a range of temperatures and compositions

- Generating quality data for systems of interest to MSR developers for which limited or no data exists
 - Supporting development of the Molten Salt Thermal Database (MSTDB)
- Developing capabilities to measure salt property values under more extreme conditions relevant to MSRs (higher temperatures, more corrosive salts)

Measuring plutonium-bearing salts as well as binary and ternary uranium-bearing mixtures to expand the database of relevant mixtures available to developers

Laboratory Capabilities

- Radiological facility housing purpose-built inert atmosphere gloveboxes used for experiments with actinides, beryllium and simulated fission products
 - > Glovebox furnace wells from six to thirty-six inches with furnace capability to 800°C
 - ➤ Induction and resistance furnaces for higher temperature applications
- Expertise and capabilities in areas essential to advancement of molten salt nuclear energy systems:
 - ➤ Thermophysical property measurements
 - Materials compatibility and corrosion studies
 - Electrochemical monitoring and control of salt chemistry and materials accountability
 - ➤ Linking understanding of fuel cycle chemistry and engineering

Thermophysics laboratory with equipment located in Ar-atmosphere radiological gloveboxes

Molten Salt Property Measurement capabilities at Argonne

Property

Density, volumetric thermal expansion and surface tension

Heat capacity, melting point, phase equilibria

Viscosity

Thermal diffusivity & thermal conductivity

Fission product & actinide solubility

Mass transfer diffusion coefficients

Vapor Pressure

Method

Archimedes method (in Ar-atmosphere rad glovebox)

Differential scanning calorimeter (DSC) (in Ar-atmosphere rad glovebox)

Rotating spindle viscometer (in Ar-atmosphere rad glovebox)

Laser flash analysis system (in rad hood with Ar purge or under vacuum)

Chemical analyses and DSC

Restricted diffusion cells (in Ar-atmosphere rad glovebox)

Coupled Thermogravimetric Analysis with Quadrupole Mass Spectrometry

Molten Salt Chemical Analysis Capabilities

On-site analytical chemistry laboratory provides rapid turnaround molten salt analyses

Method	Compositional Information	
ICP-OES	Elemental analysis ppm level	
ICP-MS	Elemental analysis at <ppm level<="" th=""></ppm>	
XRD	Identification of crystalline phase composition	
Alpha Spectroscopy Identification and quantification of alpha-emitting isotopes		
Gamma Spectroscopy Identification and quantification of gamma-emitting isotopes		
Liquid Scintillation Counting	Measurement of alpha/beta activity	
Raman Spectroscopy	Measurement of speciation (vibrational modes of ionic clusters)	
Inert gas fusion (LECO)	Quantification of C, S, O, N contaminants at <1 mg/g level	

LECO measurement of oxide concentration in molten salt including beryllium salts

Raman spectroscopy of molten salts

- Spectroscopy from ~15 to ~3500 cm⁻¹
- Portable and reconfigurable
- Microspectroscopy

energy.gov/ne

NaCl-KCl-UCl₃ measurements vs. modeling

Measured the thermal properties of (43.1-31.2- 25.7 mol%)
 NaCl-KCl-UCl₃

 Use of values in MSTDB underpredicts liquidus temperature significantly

DSC Feature	Reaction	Measured Temp.	Predicted Temp.
1	$Solid \to Liquid \; +UK_2Cl_5 \; + \; (Na,K)Cl$	474 ± 2 °C	465 °C
2	$\text{Melting (Na,K)Cl} \rightarrow \text{Liquid + UK}_2\text{Cl}_5$	505 ± 2 °C	484 °C
3	Liquidus	587 ± 2 °C	502 °C

Enabling Measurements at High Temperature

- Sealable cells are required for high quality heat capacity measurements using DSC:
 - > Developing robust mechanically sealable cells for use above 750 °C

-endo)

Heat flow (μV ,

70

950

1000

- Cells must be inert to a variety of molten salts and retain malleability to be sealable
 - Ni and Mo of various thicknesses. were tested for required shaping and sealing
 - > Different annealing procedures were attempted and Ni and Mo were not found to be satisfactory
 - > Next set of cells will be fabricated from Pt alloys

(mg)

Bottom

- -1.0

1200

Heat flow and mass loss curves of heating UF₄ in a closed but unsealed molybdenum cell

1050

Heat flow

1100

1150

High Temperature

Molybdenum Cells,

NaCl-PuCl₃ Measurements

The binary NaCl-PuCl₃ system was examined to support developer needs

- Few empirical investigations into the phase equilibria of this system exist
- Eutectic composition is likely between 36 and 38.3 mol % PuCl₃ based on published studies
- Phase equilibria measured for series of neareutectic compositions by using DSC
 - > 59.9, 49.6 and 38.3 mol % PuCl₃
 - Still measuring 37.4, 36, 30 and 20 mol % PuCl₃
- Heat Capacity of 36, 37,4 and 38.3 mol % PuCl₃ are being measured by DSC for both the solid and liquid phases

Measured thermal behaviors of three NaCl-PuCl₃ mixtures

Average and one standard deviation of three measurements of liquid heat capacity of one sample of NaCl-38.3 mol % PuCl₃

Thermal Diffusivity Measurements of NaCl-KCl-UCl₃ System

10

- Thermal diffusivities of (43.1-31.2-25.7 mol%) NaCl-KCl-UCl₃ and (66-34 mol%) NaCl-UCl₃ measured using laser flash analyzer
- A laser pulse is applied to one surface of a sample and the temperature response vs time at the other side is measured
- Graphite sample cells are used to contain salts

Thermal Diffusivity Measurements of NaCl-UCl₃ and NaCl-KCl-UCl₃. Average and standard deviation of three measurements at each temperature are shown.

energy.gov/ne

Viscosity Measurements Using a Rotational Viscometer

- A spindle is submerged in a molten salt and the torque required to maintain a constant rotational velocity is measured.
- Parameter values affecting measurements:
 - > Temperature stability
 - ➤ Volume of fluid above spindle
 - > Turbulence in fluid
 - Impurities (e.g., undissolved solids)
- Have measured viscosities of reference salts and actinide-bearing chloride and fluoride salts for private sponsors
 - Determined precision and accuracy using reference fluids

Viscosity measurements of FLiNaK compared to literature data. Measurements are average and one standard deviation of 15 measurements at each temperature

energy.gov/r

Summary

Argonne is generating high quality property data to enable a FOAK MSR by 2035

- Generating high quality data for NaCl-UCl₃, NaCl-KCl-UCl₃ and NaCl-PuCl₃ systems to fill gaps in the MSTDB
- Developing high temperature mechanically sealable cells for use in thermal analysis by differential scanning calorimetry
- Comparing measured properties to model predictions using MSTDB data.

12

Acknowledgements

Financial support provided by U.S. Department of Energy, Office of Nuclear Energy

Government License Notice -the manuscript has been created by Uchicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

Questions

Melissa A. Rose marose@anl.gov

