

Extension of MSTDB to Provide a High-Quality, Validated Thermochemical Database for Predicting/Simulating Corrosion in Molten Salt Reactor Systems - Grant number DE-NE0008985

Development of a Thermodynamic Database for Corrosion in Chloride MSRs

J. Yingling, J. Ard, J. Schorne-Pinto, M. Aziziha, A. Mofrad; T. Besmann

October 11, 2022

General Atomics SmartState Center for Transformational Nuclear Technologies

INL/CON-22-69557

Overview

- Molten Salt Thermal Properties Database -Thermochemical (MSTDB-TC), a free resource for molten salt thermodynamic properties
- Well-specified CALPHAD modeling
- Thermodynamic assessment of NaCl-KCl-MgCl_2 with UCl_3-UCl_4 and $\rm CrCl_2$
- Temperature and composition dependent formation of CrCl₂

Chloride corrosion systems of MSTDB-TC version 2.0

	KCI	MgCl ₂		UCI4	CrCl ₂	FeCl ₂	NiCl ₂
NaCl	\checkmark	\checkmark		٠	•	\checkmark	\checkmark
KCI		\checkmark		•		\checkmark	\checkmark
MgCl ₂				•		\checkmark	\checkmark
UCI ₃				•		0	0
NaCI-KCI			٠	•		\checkmark	\checkmark
NaCI-MgCl ₂	\checkmark		0	0		\checkmark	
KCI-MgCl ₂			0	0			\checkmark

General Atomics SmartState Center for Transformational Nuclear Technologies • New

- Updated
- Unavailable

Producing well-specified thermodynamic assessments

• Gibbs energy descriptions can be underdefined

Phase equilibria \rightarrow G = H - TS \rightarrow f(H, C_p, S, T, x)

• The modified quasi-chemical model in quadruplet approximation (MQMQA) describes ionic species ordering

 $\begin{array}{ccc} \mathbf{n}_{AA/X} & \mathbf{n}_{BB/X} & \mathbf{n}_{AB/X} \\ (A - X - A) + (B - X - B) = 2(A - X - B) \rightarrow \Delta G_{AB/X} \end{array}$

- With well-defined endmembers G_{MQMQA} depends only on $\Delta G_{AB/X}$ and the cation-cation coordination numbers $(Z_{AB/X})$
- In a simple eutectic, $\Delta G_{AB/X}$ and $Z_{AB/X}$ satisfied by T_{eut} and x_{eut}

General Atomics SmartState Center for Transformational Nuclear Technologies

Adapted from Pelton, A. D. *Thermodynamics and Phase Diagrams*; Centre de Recherche en Calcul Thermodynamique: Montréal, Canada, 2011.

Endmember characterization

• $\Delta_f H_{298K}^o$, S_{298K} , and $C_p(T)$ from primary sources.

• Purity benchmarking of obtained salts.

Comparison of calculated values
against experimental

Experiments compliment similar system correlations

- Cationic potential (IP_A/IP_M) trends can predict broad equilibria patterns

IP_U₃+

 $\overline{IP}_{Cr^{2+}}$

= 1.17

• Few DSC measurements needed as confirmation

Cation	ID /ID	. # of Compound	
(A)	IPA/IP _{Cr²⁺} # of Compounds		
$\overline{\mathrm{Cs}}(+)$	0.24	2	
Rb(+)	0.26	2	
K(+)	0.29	2	
Na(+)	0.39	1	
Li(+)	0.53	1+ Sol. Soln.	
Mn(2+)	0.96	Two Sol. Soln.	
Fe(2+)	1.03	Two Sol. Soln.	
Mg(2+)	1.11	Two Sol. Soln.	

General Atomics SmartState Center for Transformational Nuclear Technologies

NaCI-KCI-MgCl₂-CrCl₂

- Sparse data for the CrCl₂-MgCl₂ system, only a single set of phase equilibria available
- Higher order data may be used to better inform the lower order system assessment

General Atomics SmartState Center for Transformational Nuclear Technologies

Hastelloy-N Cr corrosion

- Equilibrium CrCl₂ formation from Ni-5.7Cr-24.0Mo-4.4mol%Fe alloy
- Nominal salt composition of 10UCl₃-30NaCl-30KCl-30MgCl₂.
- Composition variations have constant total molar content and a 1:1 NaCI:KCI ratio.
- Very small additions of Mg can greatly reduce corrosion product formation.

Summary and conclusions

- This work added 18 chloride systems (7 pseudo-ternary) to MSTDB-TC
- Correlational approaches, DSC measurements, and constrained equilibria optimizations yield accurate high-order molten salt system assessments
- Chloride corrosion calculations can be performed for
 - NaCI-KCI-MgCl₂-UCl₃-UCl₄-CrCl₂
 - NaCl-KCl-MgCl₂-(FeCl₂,NiCl₂)
- Driving forces for $CrCl_2$ formation marginally decrease with increasing temperature
- More complete understanding will require phase equilibria of NaCl-MgCl_2-UCl_3, NiCl_2-UCl_3, and FeCl_2-UCl_3

Training/Workshop on Molten Salt Thermal Properties Databases University of South Carolina November 9, 2022

Thermochemical, MSTDB-TC, and thermophysical, MSTDB-TP

- Details on the development and the current and projected future content
- Use of software for accessing the database content
 - FactSage (commercial) and Thermochemica (open access) for MSTDB-TC
 - Saline (open access) for MSTDTB-TP
 - Examples of coupling to multiphysics codes
- Presenters from UofSC, ORNL, Ontario Tech, and others
- Contributed posters on applications

Registration deadline Oct. 28!!!

For registration details and to be added to the mailing list contact: besmann@sc.edu

Organizers:

- Ted Besmann, UofSC
- Dianne Ezell, ORNL

