

Method for Redox Control with Continuous Electrochemical Measurements in MSRs **Prof. Michael Simpson** University of Utah MSR Workshop – October 11, 2022 lear rometallurgy aboratoru

Optimized Chemistry Control of Fuel Salt

Reactions that increase Redox Potential

<u>Hydrolysis</u>

 $H_2O + 2Cl^- \rightarrow 2HCl + O^{2-}$

 $H_2O + Cl^- \rightarrow HCl + OH^-$

 $H_2O + 2F^- \rightarrow 2\text{HF} + O^{2-}$

 $H_2O + F^- \rightarrow \mathrm{HF} + OH^-$

Salt Irradiation ⁶LiF + n \rightarrow ⁴He + TF UF₄ + n \rightarrow MF_x + yF₂ UCl₃ + n \rightarrow MCl_x + yCl₂

HCl/HF can cause oxidation or increase salt redox potential

HF/TF, F_2 , and Cl_2 are all corrosive towards metals

Chloride Series

-733.2

-2.903

Ba(II)

	Element	Chloride Properties (500 C)		
		ΔG (kJ/mole)	Eo (V) vs. Ag/AgCl	
Daday Duffar Optiona	Mo(III)	-172.2	0.302	
	Ag(I)	-86.5	0.000	^
	<u>Ni(II)</u>	-188.3	-0.079	
	<u>U(IV)</u>	-789.9	-0.053	
	<u>Co(II)</u>	-206.3	-0.172	
	<u>Sn(II)</u>	-226.3	-0.276	
	Fe(II)	-243.4	-0.365	
	PD(II) Cd(II)	-245.8	-0.377	Increasing
	$\frac{Cd(II)}{Cr(II)}$	-270.8	-0.507	Increasing
These are our options -	Zn(II)	-303.6	-0.677	resistance
	AI(III)	-540.0	-0.969	resistance
	Pu(IV)	-739.7	-1.020	Ito corrosion
	Mn(II)	-378.7	-1.066	
	Ti(II)	-389.4	-1.121	
	Zr(IV)	-780.9	-1.127	
$Zn + 2HCI = ZnCI_2 + H_2$ $Zr + 4HCI = ZrCI_4 + 2H_2$ $Mn + 2HCI = MnCI_2 + H_2$	<u>U(III)</u>	-698.3	-1.516	Characteria
	<u>Th(IV)</u>	-957.2	-1.584	Structure
	Np(III)	-729.0	-1.622	
	<u>Cm(III)</u>	-767.0	-1.753	
	Mg(II)	-516.7	-1.781	Fuel
	Pu(III)	-786.9	-1.822	
$Ti + 2HCI = TiCI_2 + H_2$	Am(III)	-795.3	-1.851	
	<u>Y(III)</u>	-817.1	-1.926	Race calt
	Gd(III)	-818.5	-1.931	Dasc salt
		-852./	-2.049	
		-861.5	-2.080	
We also need a continuous	<u>PT(III)</u>	-880.0	-2.095	
		-675.4	-2.147	-
real time sensor to measure	<u>Ca(I)</u> Na(I)	-357 9	-2.803	
		-344.8	-2.677	
redox potential	<u>Sr(II)</u>	-706.8	-2.766	
	Rb(I)	-361.4	-2.849	
	K(I)	-362.6	-2.861	
	$C_{s}(l)$	-366.6	-2 903	

Proposed Technology for MCFR

reference e⁻ ZRA/potentiostat electrode _ e⁻ Buffer and measure sacrificial the redox potential, ZRA OCP while measuring rate anode current of corrosion of anode. structural $Zr \rightarrow Zr^{4+} + 4e^{-1}$ alloy $4e^{-} + \left(\frac{4}{n}\right)M^{n+} \to M$ $\widetilde{E_{eq}} = E_{ZrCl_4}^o + \frac{RT}{4F} \ln(a_{ZrCl_4})$

Redox Buffering Versus NiCl₂

Zr + 2NiCl₂ = ZrCl₄ + 2Ni ← Spontaneous

Galvanic Coupling \longrightarrow $Zr = Zr^{4+} + 4e^{-} (Zr rod) \stackrel{e^{-}}{\checkmark} 2Ni^{2+} + 4e^{-} = 2Ni (SS crucible)$

Key Components:

- zero-resistance ammeter (ZRA) to measure rate of Zr oxidation
 - Stable thermodynamic reference electrode

ZRA Experimental Setup

Hamilton et. al. JRNC 2022.

ZRA Test with NiCl₂ added pre-melt

Positive current corresponds to Zr oxidation, since it was connected as the WE.

A: Insertion of Zr rod (WE), B: attempted addition of NiCl₂

Hamilton et. al. JRNC 2022.

IMAGINE

ZRA Test with In-Situ NiCl₂ Addition

What about using U metal as the anode?

8

12

Time (h)

16

20

24

Yankey, Chamberlain, and Simpson 2023 (in prep)

0

-0.2

-0.4

Potential vs. Ag/AgCl (V)

-1.2

-1.4

-1.6 +

 $Fe^{2+} + 2e^- \rightarrow Fe$

Started with LiCI-KCI-FeCl₂ (4.8 wt%) Ended with LiCI-KCI-UCl₃ (5.2 wt% U, 0.1 wt% Fe)

Could not measure galvanic corrosion current in this setup.

Chloride Reference Electrodes

OCP

K-Type Thermocouple

RE (MgO)

Ni/NiF₂ and Ag/AgF HTREs for Molten Fluoride Salts

- Mullite, quartz, and alumina membranes are good for chloride melts, but are not compatible with <u>FLiNaK</u>
- HiFunda has teamed with INL and the <u>UofU</u> to develop, demonstrate, and commercialize standardized HTREs
 - Phase II SBIR, "Stable High-Temperature Molten Fluoride Salt Reference Electrodes"
 - Corrosion monitoring for nuclear, CSP, and other applications

Three-fold HTRE functionality:

- 1) Stable thermodynamic reference potential
- 2) Integral temperature sensor
- 3) Redox or open circuit potential (OCP) sensor
- HTRE features can be customized (reference wire and salt, length, membrane) for different applications

Alumina

Sample images before/after 500-hours corrosion test at 750°C in <u>FLiNaK</u> Top image is pretest and bottom image is posttest

Rubber Boot

Comparison of OCPs and CVs in FLiNaK/NiF₂ at 550 °C

- Testing performed to determine repeatability of NiF₂ reference compartment conditions
- Average OCP of Ni and Ni201 is -0.12 ± 0.20 mV
- OCP drift for the Ni and Ni201 electrodes during the 30 days of testing is very low ranging from -7 to 5 μV/day
- Average $\underline{E}_{Li}^+/Li}$ for all the nickel electrodes is -2.06 ± 0.012 V while average E $_{Li}^+/Li}$ drift is 970 μ V/day

Summary

- Redox buffer using Zr or U metal
- Twin electrochemical measurements (OCP & ZRA)
- Tested successfully using oxidants NiCl₂ and FeCl₂
- RE's made of mullite and low density MgO exhibit excellent stability in CI-salts
- HiFunda is working on a Fcompatible RE

Further Work Needed:

- Test with better surrogate CI-salts
- Test with more oxidants
- Test with F-salts with new RE's
- Compare Zr/U to inert WE materials

Acknowledgments

Students and researchers involved with this work: Ethan Hamilton, Mario Gonzalez, Suhee Choi, and Jarom Chamberlain.

Redox control research was made possible via funding from the U.S. Department of Energy's **Versatile Test Reactor program** under contract 207312 with Battelle Energy Alliance, LLC. Technical leadership from **Joel McDuffee**, formerly of Oak Ridge National Laboratory, and program support from **Dr. Kevan Weaver** is also gratefully acknowledged.

Reference electrode research was made possible via funding from U.S. Department of Energy to **HiFunda** via SBIR program under contract DE-SC0020579. Technical and management leadership from **Dr. Jim Steppan** of HiFunda is gratefully acknowledged in addition tofunding support from **Dr. Stephen Kung**.

