

GIF - MSR provisional System Steering Committee (pSSC) Overview and Activities

October 11th 2022

David Holcomb On behalf of Stéphane Bourg and the MSR pSSC members

The Generation IV International Forum (GIF) is an international framework for co-operation in research and development for the next generation of nuclear energy systems

Six reactor technologies have been selected for further research and development:

- 1) Gas-cooled fast reactors,
- 2) Lead-cooled fast reactor,
- 3) Molten salt reactors,
- 4) Sodium-cooled fast reactors,
- 5) Supercritical-water-cooled reactors, and
- 6) Very high-temperature reactors

https://www.gen-4.org/gif/

Activities for Each Advanced Reactor Type are Coordinated Through System Steering Committees

Goals for Generation IV Nuclear Energy Systems

Sustainability-1	Generation IV nuclear energy systems will provide sustainable energy generation that meets clean air objectives and provides long-term availability of systems and effective fuel utilization for worldwide energy production.
Sustainability-2	Generation IV nuclear energy systems will minimize and manage their nuclear waste and notably reduce the long-term stewardship burden, thereby improving protection for the public health and the environment.
Economics-1	Generation IV nuclear energy systems will have a clear life-cycle cost advantage over other energy sources.
Economics-2	Generation IV nuclear energy systems will have a level of financial risk comparable to other energy projects.
Safety and Reliability-1	Generation IV nuclear energy systems operations will excel in safety and reliability.
Safety and Reliability-2	Generation IV nuclear energy systems will have a very low likelihood and degree of reactor core damage.
Safety and Reliability-3	Generation IV nuclear energy systems will eliminate the need for offsite emergency response.
Proliferation Resistance and Physical Protection	Generation IV nuclear energy systems will increase the assurance that they are very unattractive and the least desirable route for diversion or theft of weapons-usable materials, and provide increased physical protection against acts of terrorism.

MSR pSSC Operates Under a Memorandum of **Understanding (MOU)**

MOU signatories

Australia Canada Euratom France Russia Switzerland USA

China Japan Korea

Observers

Terrestrial Energy and CNL have signed the MOU under Canadian sponsorship Copenhagen Atomics has signed the MOU under Euratom sponsorship

The Challenge Faced by Gen IV MSR Systems

- Highly diverse designs are being pursued
 - No member state is currently pursuing a single design
- Designs are united by the common features and properties of molten salts and their impacts on reactor characteristics
 - Fundamental salt property data is applicable to all designs
 - Fundamental chemical and physical properties are inherently non-proprietary
- Information relied upon to make safety-related decisions on nuclear power needs to be publicly accessible
- GIF MSR safety cooperation focuses on developing fundamental information and validating methods suitable for use in safety decisions
 - Includes appropriate quality assurance
 - Does not include evaluation of specific design features

Cooperation under the MOU is voluntary, open, and fundamental

Task	System Integration & Cross-cutting issues	Task	Fuel and Coolant Salt Properties
1.1	Phenomena Identification and Ranking Table (PIRT)	2.1.	Properties of Fuel and Coolant salts
1.2	Multiphysics simulation	2.2.	Retention capacity of Fuel salt
1.3	Reactor core physics and fuel cycle	2.3.	Fuel Salt Clean-Up
1.4	Plant dynamics	3.4.	Redox control of the Fuel salt

Task	Materials and Components		
3.1	Assessment and evaluation of selected materials and manufacturing methods for the reactor plant and fuel salt processing unit:		
3.2	Codification of very-high-temperature mechanical design rules for potential application materials and manufacturing methods. Modeling and description of materials behavior and damage development will provide the basis for codification improvements.		