OSU Thermal Hydraulic Loops

Xiaodong Sun

Nuclear Engineering Program

Department of Mechanical and Aerospace Engineering

The Ohio State University

October 5, 2016

Acknowledgements

 This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs

Collaborators:

- Thomas Blue (OSU-emeritus)
- Richard Christensen (OSU-emeritus)
- Srinivas Garimella (Georgia Tech)
- David Holcomb (ORNL)
- Qiuping Lv (OSU, now at ANL)
- Farzad Rahnema (Georgia Tech)
- Piyush Sabharwall (INL)
- Dane Wilson (ORNL)
- Grady Yoder (ORNL)

Outline

- Status of Thermal Hydraulic Loops for DRACS Testing
 - Low-temperature DRACS test facility (LTDF)
 - High-temperature DRACS test facility (HTDF)
- Additional Test Loops/Facilities
 - Component testing
 - Heat exchanger testing
 - Corrosion screening testing: SS 316H in FLiNaK
 - Reduced-scale tritium removal testing

Direct Reactor Auxiliary Cooling System (DRACS)

Low-Temperature DRACS Test Facility (LTDF)

- To understand coupling and interactions of three natural circulation/convection loops
- To provide experience for construction and operation of a high-temperature salt test facility
- Construction and testing:
 Completed
 - DRACS startup test
 - Pump trip tests without/with IHX

	Primary water (1.0 MPa)	Secondary water (0.1 MPa)	Air
T _{hot} (°C)	76.5	65.2	40
T _{cold} (°C)	63.7	34.8	20
\dot{m} (kg/s)	0.038	0.016	0.102
Loop Height (m)	1.71	0.42	3.43

LTDF (Cont'd)

LTDF: Two-Dimensional As-built Drawing

High-Temperature DRACS Test Facility (HTDF)

- Primary and secondary salts: FLiNaK
- Core: Simulated by seven cartridge heaters with special sheath to match fuel heat conduction time (Max.: 70 kW)
- Pump: 5-hp cantilever sump pump from Nagle
- Fluidic diode: Vortex diode
- Fully instrumented: Clamp-on ultrasonic flow meters (Flexim);
 N-type thermocouples (Omega); level measurement (Delta Controls); in-house solution for the differential pressure measurement
- Construction completed, salt being prepared

	Primary Fluid (FLiNaK)	Secondary Fluid (KF and ZrF ₄)	Air
T _{hot} (°C)	722	666	110
T _{cold} (°C)	678	590	40
\dot{m} (kg/s)	0.120	0.127	0.142
Loop Height (m)	1.14	1.08	3.43

HTDF (Cont'd)

HTDF (Cont'd)

LTDF and HTDF Models in RELAP5

- RELAP5/SCDAPSIM/MOD 4.0
 - Selected for thermal hydraulic system-level code V&V
 - Salt property implementation
- RELAP5 models of LTDF and HTDF
 - Working fluid in LTDF: water, water, and air
 - Working fluid in HTDF: FLiNaK, KF-ZrF₄, and air
- Heat loss considered: Piping, flanges, and insulation

Comparison of with and without heat loss model

LTDF Benchmark Study

- RELAP5 simulation results against LTDF experimental data
 - DRACS startup scenario
 - Pump trip scenario

HTDF Simulation Results

- Thermodynamic and transport properties of molten salts (FLiBe, FLiNaK, and KF-ZrF₄) have been implemented into RELAP5
- RELAP5 transient analyses
 - DRACS startup scenario
 - Pump trip scenario
- Benchmark study to be performed when experimental data become available

Salt Processing

Preparing salt mixture

- Further dehydrate the constituent salts at a controlled temperature (~ 150 to 200 °C)
- Weigh and mix the salts in a controlled environment (glove box)
- FLiNaK melting point measurement
 - A flat-temperature stage corresponding to salt freezing
 - Melting point of 458.7 °C (average over 4500 5500 s)

Salt Purification and Component Testing

- Filtering molten salt
- Testing valves
- Benchmarking ultrasonic flow meters under hightemperature liquid salt conditions
- Calibrating level sensors
- Testing differential pressure measurement method

Heat Exchanger Testing

 Additional components are being added to the HTDF to facilitate HX testing under salt-salt and salt-air conditions

Corrosion Screening Testing

Operating Condition:

Salt: FLiNaK

Cover gas: Ar

Temperature: 722 °C

Time: 103 hrs

• Test specimen: SS 316H

Corrosion Screening Testing (Cont'd)

Ultrasonic cleaner

Cleaning

- Al(NO₃)₃: 1 mol/L
- Distilled water

Corrosion Rate

A: 3.12 mg/cm²-d B: 3.07 mg/cm²-d

C: 2.87 mg/cm²-d D: 2.88 mg/cm²-d

A B C D

Before testing

Before cleaning

After cleaning

Corrosion Screening Test (Cont'd)

Reduced-scale Tritium Removal Testing

Back to main loop

Reduced-scale Tritium Removal Testing (Cont'd)

Reduced-Scale Tritium Removal Testing (Cont'd)

